Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Chemosphere ; 355: 141814, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554862

RESUMEN

Evaluating the toxicity of micropollutants forms the basis for understanding their potential risks to the ecosystem and/or human health. To accurately evaluate the toxicity of micropollutants in toxicity tests, many factors have been carefully considered, while the impact of the number of test organisms on toxicity results has rarely been taken into account. In this study, the role of the organism number on the developmental toxicity of five micropollutants was investigated using embryos of the marine polychaete Platynereis dumerilii. The toxicity of hydrophobic micropollutants was found to decrease significantly with increasing the number of embryos used in the test. A quantitative model was developed to better describe how the number of embryos affected developmental toxicity. The model showed a satisfactory fit to the raw data in all scenarios tested. The intrinsic half-maximal effective concentration EC50,int was then determined using the model. For a given compound, the EC50,int was a stable parameter that did not depend on the number of test embryos and thus provided an indication of the intrinsic toxicity of the compounds tested. Compared with the EC50 values determined with the commonly used embryo number (around 120), the EC50,int values of all tested hydrophobic micropollutants were lower. The more hydrophobic the compounds tested, the more pronounced the reduction in toxicity. This suggested that hydrophobic micropollutants could be more toxic than reported in the literature. Some suggestions were also made to eliminate the effect of the number of organisms used in the toxicity evaluation.


Asunto(s)
Poliquetos , Contaminantes Químicos del Agua , Animales , Humanos , Ecosistema , Interacciones Hidrofóbicas e Hidrofílicas , Pruebas de Toxicidad , Contaminantes Químicos del Agua/toxicidad
2.
Water Res ; 253: 121258, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38359594

RESUMEN

Sewage treatment works have been considered as hotspots for the dissemination of antibiotic resistance genes (ARGs). Anaerobic digestion (AD) has emerged as a promising approach for controlling the spread of ARGs while destroying biomass in sludge. Evaluating the impact of AD on ARG removal relies on the absolute quantification of ARGs. In this study, we quantified the ARG concentrations in both full-scale and lab-scale AD systems using a cellular spike-ins based absolute quantification approach. Results demonstrated that AD effectively removed 68 ± 18 %, 55 ± 12 %, and 57 ± 19 % of total ARGs in semi-continuous AD digesters, with solid retention times of 15, 20, and 25 days, respectively. The removal efficiency of total ARGs increased as the AD process progressed in the batch digesters over 40 days. A significant negative correlation was observed between digestion time and the concentrations of certain ARG types, such as beta-lactam, sulfonamide, and tetracycline. However, certain potential pathogenic antibiotic resistant bacteria (PARB) and multi-resistant high-risk ARGs-carrying populations robustly persisted throughout the AD process, regardless of the operating conditions. This study highlighted the influence of the AD process and its operating parameters on ARG removal, and revealed the broad spectrum and persistence of PARB in AD systems. These findings provided critical insights for the management of microbial hazards.


Asunto(s)
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Anaerobiosis , Bacterias/genética , Aguas del Alcantarillado/microbiología , Genoma Bacteriano
3.
Water Res ; 250: 121039, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142503

RESUMEN

Ozone‒chlor(am)ine is a commonly used combination of disinfectants in drinking water treatment. Although there are quite a few studies on the formation of some individual DBPs in the ozone‒chlor(am)ine disinfection, an overall picture of the DBP formation in the combined disinfection is largely unavailable. In this study, the effects of ozone dose on the formation and speciation of organic brominated disinfection byproducts (DBPs) in subsequent chlorination, chloramination, or chlorination‒chloramination of simulated drinking water were investigated. High-molecular-weight, aliphatic, alicyclic and aromatic brominated DBPs were selectively detected and studied using a powerful precursor ion scan method with ultra performance liquid chromatography/electrospray ionization triple quadrupole mass spectrometry (UPLC/ESI-tqMS). Two groups of unregulated yet relatively toxic DBPs, dihalonitromethanes and dihaloacetaldehydes, were detected by the UPLC/ESI-tqMS for the first time. With increasing ozone dose, the levels of high-molecular-weight (m/z 300-500) and alicyclic and aromatic brominated DBPs generally decreased, the levels of brominated aliphatic acids were slightly affected, and the levels of dihalonitromethanes and dihaloacetaldehydes generally increased in the subsequent disinfection processes. Despite different molecular compositions of the detected DBPs, increasing ozone dose generally shifted the formation of DBPs from chlorinated ones to brominated analogues in the subsequent disinfection processes. This study provided a comprehensive analysis of the impact of ozone dose on the DBP formation and speciation in subsequent chlor(am)ine disinfection.


Asunto(s)
Desinfectantes , Agua Potable , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección/métodos , Agua Potable/análisis , Contaminantes Químicos del Agua/química , Desinfectantes/análisis , Purificación del Agua/métodos , Halogenación
4.
Anal Chem ; 95(50): 18595-18602, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38048047

RESUMEN

Cellular prion protein (PrPC) is highly expressed in a variety of tumor cells and plays a crucial role in neurodegenerative diseases. Its N-terminal domain contains a conserved octapeptide (PHGGGWGQ) repeat sequence. The number of repeats has been correlated with the species as well as the development of associated diseases. Herein, PrPC was identified to be the molecular target of a high-affinity DNA aptamer HA5-68 obtained by cell-SELEX. Aptamer HA5-68 was further optimized to two short sequences (HA5-40-1 and HA5-40-2), and its binding site to PrPC was identified to be located in the loop-stem-loop region of the head of its secondary structure. HA5 series aptamers were demonstrated to bind the octapeptide repeat region of PrPC, as well as the synthesized peptides containing different numbers of octapeptide repeats. The PrPC expression on 42 cell lines was measured by using aptamer HA5-68 as a molecular probe. The clear understanding of the molecular structure and binding mechanism of this set of aptamers will provide information for the design of diagnostic methods and therapeutic drugs targeting PrPC.


Asunto(s)
Aptámeros de Nucleótidos , Enfermedades por Prión , Priones , Humanos , Proteínas Priónicas , Aptámeros de Nucleótidos/química , Unión Proteica , Priones/genética , Sitios de Unión , Enfermedades por Prión/metabolismo
5.
Environ Sci Technol ; 57(47): 18775-18787, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37505917

RESUMEN

Pharmaceuticals have been considered a priority group of emerging micropollutants in source waters in recent years, while their role in the formation and toxicity of disinfection byproducts (DBPs) during chlorine disinfection remains largely unclear. In this study, the contributions of natural organic matter (NOM) and pharmaceuticals (a mixture of ten representative pharmaceuticals) to the overall DBP formation and toxicity during drinking water chlorination were investigated. By innovatively "normalizing" chlorine exposure and constructing a kinetic model, we were able to differentiate and evaluate the contributions of NOM and pharmaceuticals to the total organic halogen (TOX) formation for source waters that contained different levels of pharmaceuticals. It was found that at a chlorine contact time of 1.0 h, NOM (2 mg/L as C) and pharmaceuticals (total 0.0062-0.31 mg/L as C) contributed 79.8-99.5% and 0.5-20.2%, respectively, of TOX. The toxicity test results showed that the chlorination remarkably increased the toxicity of the pharmaceutical mixture by converting the parent compounds into more toxic pharmaceutical-derived DBPs, and these DBPs might contribute significantly to the overall developmental toxicity of chlorinated waters. This study highlights the non-negligible role of pharmaceuticals in the formation and toxicity of overall DBPs in chlorinated drinking water.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Halogenación , Desinfectantes/toxicidad , Cloro , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Desinfección , Preparaciones Farmacéuticas
6.
Water Res ; 242: 120255, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37356158

RESUMEN

The existence of disinfection by-products such as haloacetic acids (HAAs) in drinking water severely threatens water safety and public health. Nanofiltration (NF) is a promising strategy to remove HAAs for clean water production. However, NF often possesses overhigh rejection of essential minerals such as calcium. Herein, we developed highly selective NF membranes with tailored surface charge and pore size for efficient rejection of HAAs and high passage of minerals. The NF membranes were fabricated through interfacial polymerization (IP) with NaHCO3 as an additive. The NaHCO3-tailored NF membranes exhibited high water permeance up to ∼24.0 L m - 2 h - 1 bar-1 (more than doubled compared with the control membrane) thanks to the formation of stripe-like features and enlarged pore size. Meanwhile, the tailored membranes showed enhanced negative charge, which benefitted their rejection of HAAs and passage of Ca and Mg. The higher rejection of HAAs (e.g., > 90%) with the lower rejection of minerals (e.g., < 30% for Ca) allowed the NF membranes to achieve higher minerals/HAAs selectivity, which was significantly higher than those of commercially available NF membranes. The simultaneously enhanced membrane performance and higher minerals/HAAs selectivity would greatly boost water production efficiency and water quality. Our findings provide a novel insight to tailor the minerals/micropollutants selectivity of NF membranes for highly selective separation in membrane-based water treatment.


Asunto(s)
Agua Potable , Purificación del Agua , Membranas Artificiales , Desinfección , Calcio
7.
Int J Mol Sci ; 24(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239955

RESUMEN

The L1 cell adhesion molecule (L1CAM) plays important roles in the development and plasticity of the nervous system as well as in tumor formation, progression, and metastasis. New ligands are necessary tools for biomedical research and the detection of L1CAM. Here, DNA aptamer yly12 against L1CAM was optimized to have much stronger binding affinity (10-24 fold) at room temperature and 37 °C via sequence mutation and extension. This interaction study revealed that the optimized aptamers (yly20 and yly21) adopted a hairpin structure containing two loops and two stems. The key nucleotides for aptamer binding mainly located in loop I and its adjacent area. Stem I mainly played the role of stabilizing the binding structure. The yly-series aptamers were demonstrated to bind the Ig6 domain of L1CAM. This study reveals a detailed molecular mechanism for the interaction between yly-series aptamers and L1CAM and provides guidance for drug development and detection probe design against L1CAM.


Asunto(s)
Aptámeros de Nucleótidos , Neoplasias , Molécula L1 de Adhesión de Célula Nerviosa , Humanos , Aptámeros de Nucleótidos/química , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Neoplasias/metabolismo
8.
J Hazard Mater ; 445: 130550, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-37055964

RESUMEN

Para-chloro-meta-xylenol (PCMX) is a synthetic antiseptic used extensively to control the spread of germs and viruses, and as a result, enormous amount of PCMX could be discharged to water environments through drainage. To investigate the extent of PCMX contamination, water samples were collected from rivers and coastal waters in Hong Kong, and PCMX concentrations were determined by a newly developed method using liquid chromatography-tandem mass spectrometry combined with stable isotope-dilution. We discovered widespread PCMX pollution in the water environment. Then, we revealed for the first time that PCMX in wastewater is not effectively removed by chemically enhanced primary treatment (CEPT), one of the wastewater treatment processes used in Hong Kong (∼75% of wastewater) and other megacities around the world. This suggests that the CEPT effluent or the primary treatment effluent is an unintended continuous source of pollution for PCMX in water environments. Finally, we found that PCMX was relatively stable in the water environment and could pose a risk to aquatic organisms. These findings underscore the importance of raising public awareness of the environmental consequences from overuse of PCMX-based disinfectants and the need to reevaluate the various wastewater treatment processes in removing PCMX.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 291: 122377, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36696860

RESUMEN

Carbon monoxide (CO), a vital gasotransmitter, plays critical functions in many physiological processes. Mitochondrial CO is closely related to mitochondrial respiration, thus the detection and imaging of mitochondrial CO in living cells is very important and has attracted much attention recently. In this paper, we developed a hemicyanine-based off-on fluorescent probe, CO-H1, which was used for monitoring endogenous mitochondrial CO levels in living cells. After reacted with CO in the presence of PdCl2, the fluorescence of CO-H1 was enhanced notably, accompanied by a significant red shift of absorption. CO-H1 exhibits low cytotoxicity, high sensitivity (detection limit of 0.048 µM), and good selectivity for CO. When incubated with living cells, probe CO-H1 mainly entered the mitochondria. CO-H1 was successfully applied to imaging the exogenous/endogenous mitochondrial CO in living cells, suggesting its potential application for further studying the biological functions of mitochondrial CO in living cells.


Asunto(s)
Colorantes Fluorescentes , Gasotransmisores , Monóxido de Carbono , Mitocondrias , Imagen Óptica
10.
Environ Sci Technol ; 56(23): 16929-16939, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36409822

RESUMEN

Acetaminophen is widely used to treat mild to moderate pain and to reduce fever. Under the worldwide COVID-19 pandemic, this over-the-counter pain reliever and fever reducer has been drastically consumed, which makes it even more abundant than ever in municipal wastewater and drinking water sources. Chlorine is the most widely used oxidant in drinking water disinfection, and chlorination generally causes the degradation of organic compounds, including acetaminophen. In this study, a new reaction pathway in the chlorination of acetaminophen, i.e., oxidative coupling reactions via acetaminophen radicals, was investigated both experimentally and computationally. Using an ultraperformance liquid chromatograph coupled to an electrospray ionization-triple quadrupole mass spectrometer, we detected over 20 polymeric products in chlorinated acetaminophen samples, some of which have structures similar to the legacy pollutants "polychlorinated biphenyls". Both C-C and C-O bonding products were found, and the corresponding bonding processes and kinetics were revealed by quantum chemical calculations. Based on the product confirmation and intrinsic reaction coordinate computations, a pathway for the formation of the polymeric products in the chlorination of acetaminophen was proposed. This study suggests that chlorination may cause not only degradation but also upgradation of a phenolic compound or contaminant.


Asunto(s)
COVID-19 , Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Desinfección , Cloro , Agua Potable/química , Acetaminofén , Peso Molecular , Pandemias , Contaminantes Químicos del Agua/química , Halogenación , Dolor , Desinfectantes/química
11.
J Environ Sci (China) ; 117: 326-335, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35725086

RESUMEN

Chlorine disinfection of saline wastewater effluents rich in bromide and iodide forms relatively toxic brominated and iodinated disinfection byproducts (DBPs). Ultrasonication is a relatively new water treatment technology, and it is less sensitive to suspended solids in wastewaters. In this study, we examined the effects of ultrasonication (in terms of reactor type and combination mode with chlorination) on the DBP formation and toxicity in chlorinated primary and secondary saline wastewater effluents. Compared with the chlorinated wastewater effluent samples without ultrasonication, ultrasonic horn pretreatment of the wastewater effluent samples reduced the total organic halogen (TOX) levels in chlorination by ∼30%, but ultrasonic bath pretreatment of the wastewater samples did not significantly change the TOX levels in chlorination, which might be attributed to the higher energy utilization and decomposition extent of organic DBP precursors in the ultrasonic horn reactor. Moreover, the TOX levels in the chlorinated samples with ultrasonic horn pretreatment (USH-chlorination), simultaneous treatment (chlorination+USH) and subsequent treatment (chlorination-USH) were also significantly reduced, with the maximum TOX reductions occurring in the samples with ultrasonic horn pretreatment. A toxicity index was calculated by weighting and summing the levels of total organic chlorine, total organic bromine and total organic iodine in each treated sample. The calculated toxicity index values of the chlorinated wastewater effluent samples followed a descending rank order of "chlorination" > "chlorination+USH" > "chlorination-USH" > "USH-chlorination", with the lowest toxicity occurring in the samples with ultrasonic horn pretreatment. Then, a developmental toxicity bioassay was conducted for each treated sample. The measured toxicity index values of the chlorinated wastewater samples followed the same descending rank order.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Desinfección , Halogenación , Halógenos , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 278: 121305, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35504101

RESUMEN

Sulfur dioxide, an essential gas signaling molecule mainly produced in mitochondria, plays important roles in many physiological and pathological processes. Herein, a near-infrared fluorescent probe, A1, with good mitochondria targeting ability was developed for colorimetric and fluorescence detection of HSO3-. Probe A1 has a conjugated cyanine structure that can selectively react with HSO3- through the nucleophilic addition. The reaction with HSO3- destroys the conjugated structure of probe A1, resulting in fluorescence quenching, and accompaniedby color change of probe A1 solution from purple-red to colorless. Probe A1 showed high selectivity and good sensitivity to HSO3- in PBS. And the limit of detection was calculated to be 1.28 and 0.037 µM for colorimetry and fluorescence spectrophotometry respectively. In addition, probe A1 mainly entered the mitochondria in living cells, and was successfully used for imaging the exogenous/endogenous HSO3- in cells. These results suggest the potential applications of probe A1 in biological systems.


Asunto(s)
Colorantes Fluorescentes , Sulfitos , Colorimetría/métodos , Colorantes Fluorescentes/química , Células HeLa , Humanos , Mitocondrias/química , Imagen Óptica/métodos , Sulfitos/análisis , Dióxido de Azufre/análisis
13.
Water Res ; 217: 118383, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35460978

RESUMEN

Oxidative treatment of seawater in coastal and shipboard installations is applied to control biofouling and/or minimize the input of noxious or invasive species into the marine environment. This treatment allows a safe and efficient operation of industrial installations and helps to protect human health from infectious diseases and to maintain the biodiversity in the marine environment. On the downside, the application of chemical oxidants generates undesired organic compounds, so-called disinfection by-products (DBPs), which are discharged into the marine environment. This article provides an overview on sources and quantities of DBP inputs, which could serve as basis for hazard analysis for the marine environment, human health and the atmosphere. During oxidation of marine water, mainly brominated DBPs are generated with bromoform (CHBr3) being the major DBP. CHBr3 has been used as an indicator to compare inputs from different sources. Total global annual volumes of treated seawater inputs resulting from cooling processes of coastal power stations, from desalination plants and from ballast water treatment in ships are estimated to be 470-800 × 109 m3, 46 × 109 m3 and 3.5 × 109 m3, respectively. Overall, the total estimated anthropogenic bromoform production and discharge adds up to 13.5-21.8 × 106 kg/a (kg per year) with contributions of 11.8-20.1 × 106 kg/a from cooling water treatment, 0.89 × 106 kg/a from desalination and 0.86 × 106 kg/a from ballast water treatment. This equals approximately 2-6% of the natural bromoform emissions from marine water, which is estimated to be 385-870 × 106 kg/a.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Desinfección/métodos , Humanos , Agua de Mar/química , Navíos , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
14.
Environ Sci Technol ; 56(1): 13-29, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34932308

RESUMEN

Increasing chemical pollution of aquatic environments is a growing concern with global relevance. A large number of organic chemicals are termed as "micropollutants" due to their low concentrations, and long-term exposure to micropollutants may pose considerable risks to aquatic organisms and human health. In recent decades, numerous treatment methods and technologies have been proposed to remove micropollutants in water, and typically several micropollutants were chosen as target pollutants to evaluate removal efficiencies. However, it is often unclear whether their toxicity and occurrence levels and frequencies enable them to contribute significantly to the overall chemical pollution in global aquatic environments. This review intends to answer an important lingering question: Which micropollutants or class of micropollutants deserve more attention globally and should be removed with higher priority? Different risk-based prioritization approaches were used to address this question. The risk quotient (RQ) method was found to be a feasible approach to prioritize micropollutants in a large scale due to its relatively simple assessment procedure and extensive use. A total of 83 prioritization case studies using the RQ method in the past decade were compiled, and 473 compounds that were selected by screening 3466 compounds of three broad classes (pharmaceuticals and personal care products (PPCPs), pesticides, and industrial chemicals) were found to have risks (RQ > 0.01). To determine the micropollutants of global importance, we propose an overall risk surrogate, that is, the weighted average risk quotient (WARQ). The WARQ integrates the risk intensity and frequency of micropollutants in global aquatic environments to achieve a more comprehensive priority determination. Through metadata analysis, we recommend a ranked list of 53 micropollutants, including 36 PPCPs (e.g., sulfamethoxazole and ibuprofen), seven pesticides (e.g., heptachlor and diazinon), and 10 industrial chemicals (e.g., perfluorooctanesulfonic acid and 4-nonylphenol) for risk management and remediation efforts. One caveat is that the ranked list of global importance does not consider transformation products of micropollutants (including disinfection byproducts) and new forms of pollutants (including antibiotic resistance genes and microplastics), and this list of global importance may not be directly applicable to a specific region or country. Also, it needs mentioning that there might be no best answer toward this question, and hopefully this review can act as a small step toward a better answer.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Humanos , Plaguicidas/análisis , Preparaciones Farmacéuticas , Plásticos , Agua , Contaminantes Químicos del Agua/toxicidad
15.
Water Res ; 200: 117265, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34091221

RESUMEN

Due to rising concerns about water pollution and affordability, there is a rapidly-growing public acceptance and global market for a variety of point-of-use (POU) devices for domestic uses. However, the efficiencies and mechanisms of POU technologies for removing regulated and emerging disinfection byproducts (DBPs) are still not systematically known. To facilitate the development of this field, we summarized performance trends of four common technologies (i.e., boiling, adsorption, membrane filtration, and advanced oxidation) on mitigating preformed DBPs and identified knowledge gaps. The following highest priority knowledge gaps include: 1) data on DBP levels at the tap or cup in domestic applications; 2) certainty regarding the controls of DBPs by heating processes as DBPs may form and transform simultaneously; 3) standards to evaluate the performance of carbon-based materials on varying types of DBPs; 4) long-term information on the membrane performance in removing DBPs; 5) knowledge of DBPs' susceptibility toward advanced redox processes; 6) tools to monitor/predict the toxicity and diversity of DBPs formed in waters with varying precursors and when implementing different treatment technologies; and 7) social acceptance and regulatory frameworks of incorporating POU as a potential supplement to current centralized-treatment focused DBP control strategies. We conclude by identifying research needs necessary to assure POU systems protect the public against regulated and emerging DBPs.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Desinfectantes/análisis , Desinfección , Halogenación , Agua , Contaminantes Químicos del Agua/análisis
16.
Environ Sci Technol ; 55(9): 5906-5916, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33830743

RESUMEN

Although >700 disinfection byproducts (DBPs) have been identified, >50% of the total organic halogen (TOX) in drinking water chlorination is unknown, and the DBPs responsible for the chlorination-associated health risks remain largely unclear. Recent studies have revealed numerous aromatic halo-DBPs, which generally present substantially higher developmental toxicity than aliphatic halo-DBPs. This raises a fascinating and important question: how much of the TOX and developmental toxicity of chlorinated drinking water can be attributed to aromatic halo-DBPs? In this study, an effective approach with ultraperformance liquid chromatography was developed to separate the DBP mixture (from chlorination of bromide-rich raw water) into aliphatic and aromatic fractions, which were then characterized for their TOX and developmental toxicity. For chlorine contact times of 0.25-72 h, aromatic fractions accounted for 49-67% of the TOX in the obtained aliphatic and aromatic fractions, which were equivalent to 26-36% of the TOX in the original chlorinated water samples. Aromatic halo-DBP fractions were more developmentally toxic than the corresponding aliphatic fractions, and the overall developmental toxicity of chlorinated water samples was dominated by aromatic halo-DBP fractions. This might be explained by the considerably higher potentials of aromatic halo-DBPs to bioconcentrate and then generate reactive oxygen species in the organism.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Desinfectantes/análisis , Desinfectantes/toxicidad , Desinfección , Halogenación , Halógenos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
17.
Chemosphere ; 263: 127954, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32854008

RESUMEN

Chlorine disinfection is required to inactivate pathogens in drinking water, but it inevitably generates potentially toxic halogenated disinfection byproducts (halo-DBPs). A previous study has reported that the addition of ascorbate to tap water before boiling could significantly decrease the concentration of overall halo-DBPs in the boiled water. Since the fruit lemon is rich in vitamin C (i.e., ascorbic acid), adding it to tap water followed by heating and boiling in an effort to decrease levels of halo-DBPs was investigated in this study. We examined three approaches that produce lemon water: (i) adding lemon to tap water at room temperature, termed "Lemon"; (ii) adding lemon to boiled tap water (at 100 °C) and then cooling to room temperature, termed "Boiling + Lemon"; and (iii) adding lemon to tap water then boiling and cooling to room temperature, termed "Lemon + Boiling". The concentrations of total and individual halo-DBPs in the resultant water samples were quantified with high-performance liquid chromatography-tandem mass spectrometry and the cytotoxicity of DBP mixtures extracted from the water samples was evaluated using human epithelial colorectal adenocarcinoma Caco-2 cells and hepatoma HepG2 cells. Our results show that the "Lemon + Boiling" approach substantially decreased the concentrations of halo-DBPs and the cytotoxicity of tap water. This strategy could be applied to control halo-DBPs, as well as to lower the adverse health effects of halo-DBPs on humans through tap water ingestion.


Asunto(s)
Ácido Ascórbico/química , Desinfección/métodos , Ácido Ascórbico/análisis , Células CACO-2 , Cloro/análisis , Desinfectantes/química , Agua Potable/química , Halogenación , Humanos , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
18.
Water Res ; 188: 116520, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33091806

RESUMEN

Chlorine dioxide (ClO2) is a prevalently used disinfectant alternative to chlorine, due to its effectiveness in pathogen inactivation and low yields of organic halogenated disinfection byproducts (DBPs). However, during ClO2 generation, chlorine is inevitably introduced into the obtained ClO2 solution as an "impurity", which could compromise the merits of ClO2 disinfection. In this study, drinking water disinfection with ClO2 containing 0‒25% chlorine impurity (i.e., at Cl2 to ClO2 mass ratios of 0‒25%) was simulated, and the effect of chlorine impurity on the DBP formation and developmental toxicity of the finished water was evaluated. With increasing the chlorine impurity in ClO2, the chlorite level kept decreasing and the chlorate level gradually increased; meanwhile, an unexpected trend from decline to rise was observed for the total organic halogenated DBPs, with the minimum level appearing at 5% chlorine impurity. To unravel the mechanisms for the variations of organic halogenated DBPs with chlorine impurity, a quantitative kinetic model was developed to simulate the formation of chlorinated, brominated, and iodinated DBPs in the ClO2-disinfected drinking water. The modeling results indicated that reactions involving iodide accounted for the decrease of organic halogenated DBPs at a relatively low chlorine impurity level. In accordance with DBP formation, ClO2 with 5% chlorine impurity generated less toxic drinking water than pure ClO2, while significantly higher developmental toxicity was induced until the chlorine impurity reached 25%. For E. coli inactivation, the presence of chlorine impurity enhanced the disinfection efficiency due to a synergistic effect of ClO2 and chlorine. Therefore, disinfection practices with ClO2 containing low chlorine impurity (e.g., <10%) might be favored (i.e., there is no need to eliminate low chlorine impurity in the ClO2 solution), while those containing high chlorine impurity should be concerned.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Compuestos de Cloro , Desinfección , Escherichia coli , Halogenación , Óxidos , Contaminantes Químicos del Agua/análisis
19.
Chemosphere ; 254: 126890, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32957290

RESUMEN

Chlorine disinfection inactivates pathogens in drinking water, but meanwhile it causes the formation of halogenated disinfection byproducts (DBPs), which may induce adverse health effects. Humans are unavoidably exposed to halogenated DBPs via tap water ingestion. Boiling of tap water has been found to significantly reduce the concentrations of halogenated DBPs. In this study, we found that compared with boiling only, adding ascorbate (vitamin C) or carbonate (baking soda) to tap water and then boiling the water further reduced the level of total organic halogen (a collective parameter for all halogenated DBPs) by up to 36% or 28%, respectively. Adding ascorbate removed the chlorine residual in tap water and thus prevented the formation of more halogenated DBPs in the boiling process. Adding carbonate elevated pH of tap water and consequently enhanced the hydrolysis (dehalogenation) of halogenated DBPs or led to the formation of more trihalomethanes that might volatilize to air during the boiling process. The comparative developmental toxicity of the DBP mixtures in the water samples was also evaluated. The results showed that adding a tiny amount of sodium ascorbate or carbonate (2.5-5.0 mg/L) to tap water followed by boiling for 5 min reduced the developmental toxicity of tap water to a substantially lower level than boiling only. The addition of sodium ascorbate or carbonate to tap water in household could be realized by preparing them in tiny pills. This study suggests simple and effective methods to reduce the adverse effects of halogenated DBPs on humans through tap water ingestion.


Asunto(s)
Desinfectantes/toxicidad , Contaminantes Químicos del Agua/toxicidad , Ácido Ascórbico , Carbonatos , Cloro , Desinfectantes/análisis , Desinfección/métodos , Agua Potable/química , Halogenación , Halógenos , Humanos , Trihalometanos/análisis , Volatilización , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
20.
Chemosphere ; 260: 127458, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32693253

RESUMEN

Advances in the ultra-high-resolution mass spectroscopy lead to a deep insight into the molecular characterization of natural organic matter (NOM). Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) has been used as one of the most powerful tools to decipher NOM molecules. In FTICR-MS analysis, the matrix effects caused by the co-occurring inorganic substances in water samples greatly affect the ionization of NOM molecules. The inherent complexity of NOM may hinder its component classification and formula assignment. In this study, basic principles and recent advances for sample separation and purification approaches, ionization methods, and the evolutions in formula assignment and data exploitation of the FTICR-MS analysis were reviewed. The complementary characterization methods for FTICR-MS were also reviewed. By coupling with other developed/developing characterization methods, the statistical confidence for inferring the NOM compositions by FTICR-MS was greatly improved. Despite that the refined separation procedures and advanced data processing methods for NOM molecules have been exploited, the big challenge for interpreting NOM molecules is to give the basic structures of them. Online share of the FTICR-MS data, further optimizing the FTICR-MS technique, and coupling this technique with more characterization methods would be beneficial to improving the understanding of the composition and property of NOM.


Asunto(s)
Ciclotrones , Análisis de Fourier , Espectrometría de Masa por Ionización de Electrospray/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...